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ABSTRACT

A new method for parameterizing turbulent fluxes of momentum,

heat, and moisture within the stable surface layer is presented. The

method is designed to supplant the existing scheme used in the Geophysical

Fluid Dynamics Laboratory's 'E21 physics package. The existing E2 scheme

is incompatible with the turbulent transfer coefficients that are used

in the current version of the Medium Range Forecast Model (the MRF86). The

new method unifies the subdivided stable regime of the E2 physics and

provides a compatible, economical, and noniterative technique that does

not possess the limitation of a finite critical bulk Richardson number.



Introduction

A technique is presented for computing the surface layer fluxes of

momentum, heat, and moisture during stable conditions. The method is

intended to replace the existing scheme used in the Geophysical Fluid

Dynamics Laboratory's 'E2' boundary layer parameterization.

The 'E2' method divides the stable surface layer into four regimes:

weakly stable, mildly stable, strongly stable, and nonturbulent. Except

for the nonturbulent category, each regime has a specific flux-profile

relation. These relations are functions of the nondimensional height,

-Z/L, in which L is the Obukhov length. The first three regimes

are specified by, i' (~ ) H ( )= B (C), in which

weakly, C? 7= 57-~ 11
stable: ;

mildly (1.2)stable: -

strongly ? (ki) le7& < C. ,o

The functions are the universal nondimensional vertical

shears of windspeed, potential temperature, and specific humidity and

are defined by,

~J , (1.4)
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(1.5)

- ; (1.6)

in which k Q' ) · ) is the von Karman constant, and 6L% . , and

are the turbulent scaling parameters for the fluxes of momentum, heat,

and humidity. The constants b and c are on the order of unity for all

published flux-profile relations. For the 'EV profiles, b = c = 1.

It is fairly common modeling practice to use (1.1) for the entire

stable regime > 0/ The use of (1.1) for all ~>/ O leads to

a critical gradient Richardson number (~_~) of 0.20. Modeled surface

layer turbulent fluxes vanish as the critical Richardson number is

approached. As the fluxes vanish, the nondimensional length diverges

( -i--~ ~- ), and the Obukhov length approaches zero.

The most significant effect of introducing relations (1.1-3), as

suggested by Carson and Richards (1977), is to shift the critical Richardson

number from 0.2 to 1.32. This shift permits the existence of modeled

turbulent fluxes over a more generous range of stability than would be

allowed by (1.1). The turbulent fluxes of momentum, heat, and moisture

in the surface layer are denoted by rF ') and are

given by,

F :(1.7):: :

P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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00 g e tW<0*- 0 5 (ii) (SC tH) s@W~~~~~(1.8)

D~ ~ ~ ~ ~~~~~~~~~~I .s' .1.9
In this note we shall make the standard assumption that -

although fully convincing corroborative evidence is lacking. We shall

also assume that ¢ = Q during stable conditions. For unstable

conditions it is well known (see, for example, Businger et al., 1971)

that this is not the case, but for mildly stable conditions, experimental

data suggest that _z =c q C . For increasing stability, it is possible

that t and H begin to differ substantially (Turner, 1973; Kondo

et al. 1977), but we shall not attempt to deal with this possibility in this

note.

To help demonstrate the need for an alternative flux-profile formulation,

we first show that for modeling purposes, standard linear C f of

the form

ii~'~) :; H 5 : - :Y: tl: t< n ) : (1.11)

can impose an undesirable restriction. From the definition of the Obukhov

length (Businger et al., 1971),

LX =t~ H (1.13)

D ¥
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and from (1.4,5), we see that the connecting relation between the gradient

Richardson number 9
k_1 9

0 (r U 3l and the nondimensional height 
d E \ 7 - : l

is simply

(1.14)
T 19~~~~~~-

For the linear Q in
'1J 

(1.10,11), the relation between 
)l, H

and R is

,-1=so ( that R approaches a fini te limit 

,(1.15) shows that R approaches a finite limit - )* As __ <C>

1.15)

that is given by " 2 c. (1.16)

Field experiments indicate that c - O.7 H - ' and L _ - . The

data of Businger et al. (1971) yield 1yXa 0.213, while the data of Dyer and

Hicks (see Dyer, 1974) yield Gc= 0.20. Both values of are probably

too restrictive for numerical models in which R quite commonly exceeds .

The main consequence of a low c is that too much of the upward

daytime heat from .the air-ground interface into surface layer and the

layers above the surface layer cannot return to the ground during stable

nocturnal conditions. A relaxation of the RC restriction is needed to

enhance the downward flux at night. Compared to the daytime convective

surface layer, the nocturnal surface layer is shallow with small, patchy
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turbulent eddies mixed with gravity waves. As Yu (1978) has 'pointed out,

there is no commonly agreed upon definition of the depth of the stable

boundary layer, much less a simple mathematical description. Wyngaard (1985)

observed of the stable boundary layer that, "..its energetics can be in a

delicate and precarious balance, and extremely sensitive to changes in

the mean wind profile (whose shear is its energy source) and the mean

temperature profile (whose stable lapse rate severely limits its vertical

motions)".

The lack of clear-cut knowledge of the stable boundary layer's

profile laws permits some constructive tampering, as in Carson and

Richards' profile laws (1.1-3). Their expression for mild stability

(1.2) does not arise from empirical data, but is merely a smooth

interpolation fromt(1.1) to (1.3). Only (1.1) has strong experimental

support.

II. The extension of c and a new formulation for ? H

In this section we shall propose a simple formulation for C H

that exhibits neither a critical gradient nor a critical bulk Richardson

number. In addition, the formulation does not require three partitioning

relations as is the case with (1.1-3).

To motivate the new form for {j , we first examine the

behavior of and the turbulent diffusion coefficients for the general

linear profiles (1.10,11). As shown in (1.15), a quadratic equation must

be solved to compute from a given gradient Richardson number. A

simpler, more perspicuous approximation, valid for > > 1,
r1 H

results from expressing (1.15) as
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Q1 t I ) 2
d. iM.S) (

I + ) 
and using

(O -h v e C- + OC--)

to get

(2.1)

in which

(2.2)W = B'VA- I M p 

<), ;k C?$ K Lx ?

The expressions for the

and are given by

diffusion coefficients K 
Mi H4

follow from (1.7,8)

({ 0E > X (:H f ;XS
M R 

in which

and 0the mixing length is equ

and the mixing length t is equa

E X Y ( tF I w ) (I + dfi (2.4) 

Li to k 7- . For the special~case of

the Dyer-Hicks profile (1.1), we have

_ 1K-i ,e

and

(1 '- XoC

~(2.6)

K IA H
(2.3)

(2.5)

� - S
111, C-

i- - ),Y1I

,f T-,, � / C � -P,

Q i

Q XK mj H
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in which Q( = 5.0. The turbulent diffusion coefficients drop

to zero rapidly and ~ diverges as R approaches 0.2, a rather stringent

stability range.

This undesirable situation is substantially offset by invoking

profile laws (1.2) and (1.3). Eq. (1.2) requires that a cubic equation

be solved to compute ~ from R. By substitution, we see that R-->1.32

as --* 10. The critical gradient Richardson number also equals 1.32

since, for /10, R is independent of and equals (O.) - , which

is just 1.32. Thus, with the Carson and Richards' profile laws, the

range of: the gradient Richardson numbers is expanded by a factor of 6-7

over the simpler linear 

In calculating the surface fluxes in numerical models, it is the bulk

rather than gradient Richardson number that is the useful nondimensional parameter.

Given the potential temperature difference , between zo'( roughness

height) *and z (frequently taken as the height of the. first model layer)

and the windspeed U at *z, then a bulk Richardson number, defined as

~'~---- U 0-% can be shown to be related to Z/L by an expression

analogous to (1.14), that is,

_ 0 00t; i _ 9 f (2.7)L... _
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in which

(2.8)

V H

For the Carson and Richards profiles, FM,H are given by

(2.9)
%f
i + Y(% _ 8 m f or 0 do 2< O 0. 15

O

'' Fl) 14f~ 

for C I .T ~ .$< 0

- CTL (S=lo)

('6 - 1k2,S - F -)
(2.10)

In the case of a weakly stable surface layer ( S 

F-
F . -N
:Ej W

0.5), we have

.5(I -Q'
or (for o <<1 ,which is generally the case),

v

(2.12)

\ - S- 1R 

P?
M) A4

r-sF L
Mj H

OPS
1~14

ri2 :
S
s =t~

I-S )

and

FM
1-5 ti

t 5 S>, Is, (2.11)

'i�

'-Z0

I

/ua - +
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The mildly and strongly stable cases are nonlinear and can be solved by

iteration; however, from (2.11) it is evident that the critical RB is

equal to (O6.7 r ) = 1.32. This is the same value as the critical gradient

Richardson number. For '-iB 1.32, ~ diverges and the surface

fluxes vanish.

A new flux-profile expression can be devised by first noting that

(2.6),

can be approximated for QL R by

K = --tŽ QX~ u ,-(2.13)

Since +

and (1 -o Q I - -OLT, + cLI agree to first-order in ,

it is reasonable to speculate that (2.6), which is valid only for

.4 '9- ' d ,could be profitably supplanted by + L ) , which is

valid for all 0 > . With (\ -dCf) , there is no critical

gradient Richardson number at which surface fluxes vanish. Moreover,

(2.13) is currently used at all levels above the surface layer in the

new version of the Medium Range Forecast Model (the so-called MRF 86).

Adopting (2.13) as the formulation of choice for the surface layer

means abandoning the Carson and Richards flux-profile expressions for
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;:it f ollows

. Since

from (2.13 ) that the new become
ffrom (2.13) that the new; become

Q7 ± tre

C~M ~ 

For small values of .

but for large

' .= V-'tI +_ -- _)

an :

and : 0, we have the ,usual linearTesults,

, we have the results

(2.20)

: S)] -1
-4

or

(2.14)

(2.15)

(2.16)

and

$ I +CL -k)

(2.17)

(2.18)

(2.19)

II.V-,,I

/S

C� M �
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0 0 0 0 0; V Mfl 0 () t; C0 (2;.'21)

It is the departure from linearity in (2.20,1) that removes the possibility

of a finite positive critical Richardson number.

III. Solutions for as functions of B

In this section we show how can be computed by iteration as a

function of the bulk Richardson number. We shall also show that

can be approximated to acceptable accuracy without iteration. In either

case, knowledge of leads directly to u*,;.*, and q*, and, therefore,

to the turbulent fluxes ?MH, . We can also compute CM and CHO~~~~~~~~~~~~~~~~~~
the bulk transfer coefficients for momentum and heat, from

(3.1)

~k/ ~ F, * (3.2)

_~~~~

-The fluxes F are calculated from

:F U-(oC U2- (3.3)

~F~I t000000 %; = -?0C5 CH; 0 390 0 (3.4)

:00 0 2 ; 0 0 0f: 0 %S0= 0-0e :X;£H00 t:";0 0 : gi(3.5)0
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We first integrate ? toI g

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:'
M J H :7 , zI/ I~~~~~~

- I t ) 
--~ % ,~~~~~~~~~~~~~~

et F. 10

H ( |I / L) 

-E, I H., T .: --
Q

+ ~ I E. 7 + i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ft r A, 1 ( rl > - Li XCt/ + 2M:&2 '\ :t \) + }4& , ) _1 (3-6)_ : @ :~~~~~~~~~~~~~~

Since F are conventionally written in the form
,0 H I 

F.

(Lumley and Panofsky,

within the algebra of

- + iteration of

*%! -I

1964), we see that l b q/~ :0 ) has been 'lost'

(3.6)'. Moreover, experience in computing the

- ( -I )from
nIIl 

(3.8)

F14 ; Sn

shows that the iteration fails for close-to-neutral cases in which ~C

becomes too small. There is nothing algebraically incorrect with (2.7)

(3.7 )-tL:Z --Y ( ; L °I/L)n

m (Sn -., ~ O I

)

T\ S
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and (3.6); the difficulty arises from the computation of the factor

(/-Ii (O 1 '- ). 0When is sufficiently small the factor is

erroneously computed as a negative number with a very small absolute

value on a computer with finite precision. This causes the. bracketed

factor in (3.6) to be a large negative quantity, and the computation halts.

To find a remedy for this failure, we must derive a more 'computer

friendly' form of (3.6). This is achieved by writing the bracketed term

in (3.6) as

where the s,so notation is obvious, and by multiplying the numerator and

denominator by so + 1 and s + 1:

2 +tert)~LsZi =t(39)

We see that the 'missing' L qf Y1(Z/ZO) has been recoveredjand wel

have the readily-computable (3.10): 

f ti; Hf t;) Y ( / L J - 1 L) (~~~~~3.10)
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with

reduces to the familiar 'log + linear' form as neutral conditions

-- + are approached:

00~~~~' f 0 F J4 0D< +1~ 0) 0~ ~,. ~ . b, ~ ~~~ 
The solution for ~ for the log + linear expression is given by (2.12).

Eqs. (2.12) and (3.12) are only valid for oh 41 . To derive an

approximate expression valid for ~ >1 , we write F Has

, H ( ao) ' , S ) r' )-. -SS;00e'S6 (3.13)

in which b is chosen so that cC u >> . We then have

'"'~~~~~~~~~~~ L+ a"~
c ) 2 S 6 S F; / (3

0: n ;se +4 :Je 't : : f(3.14)
=_g , t(B/4) , 'r ~-~ ~ (" ,,0t 3.: 
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Thus, for z >> | » 9

( b I; I +I- _ 0 A/(C5.

It is convenient and standard practice to define

(3.16)

in which

I.-- 0

;l VI
'Z 0 :O (3.17)

For the problem at hand, / () is given by- II" ~~~~~~~~~~~~~~~~~~~~~~ (S)~~~~~~~~~~~

(t+
(3.18)

The approximate expression for FrA M ( i): can now be written as

FIMJ Q%) II\A \ ( S )6 - TC g0

.R 01 . \A6
I I IZ )

- IV4
t YO%(3.15)

06~.

+ W;(So)

Q

j.� 71y � S
". � -> , 0)

W I0;)( so)

-i �'� (SO �

S' ( S:) - ( S 8a \O
0

: ~~ kW ( SS) = q (I fe 1 : : )_~~~~i I \qC 

: I X
_ 6 L ), 

+ 2 : > (i5R 6) +
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which, for c: = 5 and i = 1, becomes

SI + A -
Ok

t 

Fm F (e) SEX., 0ML)

A:- ( .42 - i -

If -Q is neglected in comparison to ( / o)

C\ rv

If we let rA - I/, then (3.21) approximates the quadratic equation

(3.22)

(3.23)

00X00 000 =: rw +00 t~e0eP0)

The physically correct solution to (3.92) is

5 + ' AR 
(3.24)

(3.19)

(3.20)

, we get,

+- A (3.21)

I, )2Y) S

a ru

I *dad) 

+7 �') 4T %

(/,, � - A -F'�\ 13

""IPCL
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in which is defined as

(3.25)

Numerical computations show that can be adequately approximated by

CO; a =% > h/ for 4 , and for >62 5

Substitution of the approximate value of ~ into (3.10,11) leads

to momentum and heat transfer coefficients C M that differ only

slightly from the 'exact' values. Table I shows the relation between

0 f: f Tr: 0 . : :~~~~~~E .

and C 1 for a wide range of L for Z =50 m and for Zo = 00001 m.

Table II is the same as Table I, except that Z o = 1.0 m.

These tables encompass the extreme ranges of stability and roughness

that are likely to be encountered in routine modeling calculations, yet

go well beyond the range for which there are supportingfield data. For.

example, for L ox ~ meter, it is unlikely that any existing

profile law can adequately predict e (Z) and U (Z). In fact, all

calculations for 7m . O IL o s hould be viewed with suspicion,

even though such'conditions may arise fairly frequently in numerical

modeling practice.
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Comparison between exact and approximate

00W

5.00E-3
5.OOE-2
10.00E-2
0.2

0.5
0.667
1.00
2.00

5.00

10.00

50.00

4.99E-3
4.92E-2
9.69E-2
0.189
0.447
0.582
0.837

1.52

3.21

5.41
16.0

0.38
3.75

7.38
17.80

34.10
44.30
63.80
116.00
244.00
412.00
1220.00

for 0 =<-- O Ot yn

C VI) I

4.37E-3
4.56E-2
9.28E-2
0.190
0.488
0.658
1.00
2.04
5.24
10.6
53.7

0.926
0.898
0.872
0.831
0.743
0.708
0.651
0.540
0.382
0.272
0.0953

Comparison between exact and approximate 9 for -,Z= I.Oyn

: ~ ~ f X I : :

L, meters X 103 ; . S CS QO~~~~~~~~M -
10,000
1,000

500
250

100
75

50
25

10

5

1

1.27
12.10
23.10
43.00
92.40
116.00

157.00
256.00
462.00
699.00
1710.00

5.OOE-3
5.OOE-2

10.OO0E-2

0.2

.0.5
0.667
1.00
2.00
5.00

10.00
50.00

4.97E-3
4.73E-2
9.05E-2
0.168
0.362
0.453
0.614
1.00

1.81
2.73

6.70

2.84E-3
3.41E-3
7.44E-2
0.164
0.467
0.647
1.02
2.21

5.96
12.4
65.3

10.3
9.37
8.56

7.41
5.47
4.82

3.94
2.61

1.36
0.782
0.188

Table I.

L, meters

10,000
1,000

500
250

100
75

50
25

10

5

1

Table II.

; X io3 : I 0 3
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Table III. Comparison of exact (Ce ) and approximate(rF) heat

fluxes ( uJD OLt W-- Ynl ) for A 9 = 2 ak onv -O °.oO Iyoyn

U L a io 3 L C , x ko3 : 1 -0 Id : , D : Ml : et

10 35.6
9 44.0

8 55.7

7 72.7

6 99.0

5 143.00

4 223.o00
3 396.00

2 891.00
1 3560.00

Table IV.

.95.3
75.6

58.2
43.1
30.2
19.6
11.3
5.5
1.6
0.2

0.738
0.709
0.673
0.623
0.571
0.498
0.402
0.279
0.136
0.021

17.9
15.4
13.0
10.6

8.2

5.9
3.8
2.0

0 .62
0.05

17.8
15.4
13.0
10.6
8.3
6.0
3.9
2.0
0 .67
0.05

Similar to Table III except -0 - I O Yn

:i 7 L C:: -o3.i

10 35.60
9 44.00
8 55.70
7 72.70

6 99.00
5 143.00

4 223.00
3 396.00
2 891.00

1 3560.00

310.00
244.00
185.00
135.00
91.70
56.90
30. 60
12.80
3.30
0 .20

7.80
7.36
6.81
6.13
5.27
4.22
2.97
1.64
0.545
0.501

198.00
168.00
138.00
107.00
78.10
50.70
27.30
10.60
2.15
0.09

188.00
10.00
131.00
103.00
76.30
50.80
28.60
11.90

2.63
0.12
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Table I, representing a very smooth surface, shows that when L ranges

from o Oyny (extremely stable) to 10 -n (very close to neutral), the heat

and momentum transfer coefficients vary over about one order of magnitude.

By constrast, Table II, representing an extremely rough surface, shows

that the same range of L produces CMr H that span more than two orders of

magnitude. We also see that the approximation holds fairly

well for . O o S , and that " -J is reasonably

valid for % 0.25. Note that cO progressively underestimates

: texact for ~ . j and overestimates xc for > 1.

Tables Ill and IV give the energy flux (watts n-z) for .O OO O yn

and ,o I=O;r for -= 2A 9 MUthat diminishes from I 0 - s C- 1 to

-M n SeC. Although the sensible heat flux for moderately stable conditions

is rather modest, it is by no means negligible and is comparable to a

typical nocturnal soil heat flux. In contrast, the sensible heat flux of

188 watts n. for 0o = ,O and'U 10y sec, is certainly counter-

intuitive for nocturnal conditions. We note, however, that although R B

is stable, it is fairly. close to neutral. In addition, a wind speed of

:lO. nnseC over a very rough o= Yn that maintains a s of 2 K is

itself counter-intuitive, Counter-intuitive causes must be expected to

produce counter-intuitive effects.

In general, the approximate:expressions for coand ~, produce

fluxes that are very close to the 'exact' values.

IV Conclusions

' -:A new method is presented for computing fluxes of momentum, heat,

and moisture for the stable surface layer of the 'E2' physics of the MRF86
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model. The new method achieves several goals: (1) The existing nocturnal

'E2' surface layer relations are incompatible with the formulation for

turbulent transfer coefficients ( rpyabove the surface layer. The

new method makes the relations compatible. (2) The current E2 physics

subdivides the stable regime into weakly, mildly, and strongly stable

subdomains, each with its own algebraic expressions. The new method

unifies the stable regime into a single, continuous domain. (3) The E2

surface layer physics has a critical bulk Richardson number of 1.32,

above which all fluxes vanish. The new method has no positive, finite

critical bulk Richardson number. As the Richardson number increases, the

surface fluxes decrease but do not vanish. (4) The E2 physics requires

an iterative technique for calculating the surface fluxes. The new method

does not.
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